Jumat, 12 Oktober 2012

resistor

Resistor

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Langsung ke: navigasi, cari
Resistor
3 Resistors.jpg
Tiga buah resistor komposisi karbon
Simbol Resistor symbol Europe.svg (IEE, IEC, EU)
Resistor symbol America.svg (US, JP)
Tipe Komponen pasif
Kemasan Dua kaki
Fungsi Menahan arus listrik

Resistor kaki aksial

Tiga resistor komposisi karbon para radio tabung vakum
Resistor adalah komponen elektronik dua kutub yang didesain untuk menahan arus listrik dengan memproduksi tegangan listrik di antara kedua kutubnya, nilai tegangan terhadap resistansi berbanding dengan arus yang mengalir, berdasarkan hukum Ohm:
\begin{align}V&=IR\\
I&=\frac{V}{R}\end{align}
Resistor digunakan sebagai bagian dari jejaring elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam kompon dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).
Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat dihantarkan. Karakteristik lain termasuk koefisien suhu, desah listrik, dan induktansi.
Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, kebutuhan daya resistor harus cukup dan disesuaikan dengan kebutuhan arus rangkaian agar tidak terbakar.

Daftar isi

Satuan

Ohm (simbol: Ω adalah satuan SI untuk resistansi listrik, diambil dari nama Georg Ohm.
Satuan yang digunakan prefix :
  1. Ohm = Ω
  2. Kilo Ohm = KΩ
  3. Mega Ohm = MΩ

Konstruksi

Komposisi karbon

Resistor komposisi karbon terdiri dari sebuah unsur resistif berbentuk tabung dengan kawat atau tutup logam pada kedua ujungnya. Badan resistor dilindungi dengan cat atau plastik. Resistor komposisi karbon lawas mempunyai badan yang tidak terisolasi, kawat penghubung dililitkan disekitar ujung unsur resistif dan kemudian disolder. Resistor yang sudah jadi dicat dengan kode warna sesuai dengan nilai resistansinya.
Unsur resistif dibuat dari campuran serbuk karbon dan bahan isolator (biasanya keramik). Resin digunakan untuk melekatkan campuran. Resistansinya ditentukan oleh perbandingan dari serbuk karbon dengan bahan isolator. Resistor komposisi karbon sering digunakan sebelum tahun 1970-an, tetapi sekarang tidak terlalu populer karena resistor jenis lain mempunyai karakteristik yang lebih baik, seperti toleransi, kemandirian terhadap tegangan (resistor komposisi karbon berubah resistansinya jika dikenai tegangan lebih), dan kemandirian terhadap tekanan/regangan. Selain itu, jika resistor menjadi lembab, panas solder dapat mengakibatkan perubahan resistansi dan resistor jadi rusak.
Walaupun begitu, resistor ini sangat reliabel jika tidak pernah diberikan tegangan lebih ataupun panas lebih.
Resistor ini masih diproduksi, tetapi relatif cukup mahal. Resistansinya berkisar antara beberapa miliohm hingga 22 MOhm.

Film karbon

Selapis film karbon diendapkan pada selapis substrat isolator, dan potongan memilin dibuat untuk membentuk jalur resistif panjang dan sempit. Dengan mengubah lebar potongan jalur, ditambah dengan resistivitas karbon (antara 9 hingga 40 µΩ-cm) dapat memberikan resistansi yang lebar[1]. Resistor film karbon memberikan rating daya antara 1/6 W hingga 5 W pada 70 °C. Resistansi tersedia antara 1 ohm hingga 10 MOhm. Resistor film karbon dapat bekerja pada suhu di antara -55 °C hingga 155 °C. Ini mempunyai tegangan kerja maksimum 200 hingga 600 v[2].

Film logam

Unsur resistif utama dari resistor foil adalah sebuah foil logam paduan khusus setebal beberapa mikrometer.
Resistor foil merupakan resistor dengan presisi dan stabilitas terbaik. Salah satu parameter penting yang memengaruhi stabilitas adalah koefisien temperatur dari resistansi (TCR). TCR dari resistor foil sangat rendah. Resistor foil ultra presisi mempunyai TCR sebesar 0.14ppm/°C, toleransi ±0.005%, stabilitas jangka panjang 25ppm/tahun, 50ppm/3 tahun, stabilitas beban 0.03%/2000 jam, EMF kalor 0.1μvolt/°C, desah -42dB, koefisien tegangan 0.1ppm/V, induktansi 0.08μH, kapasitansi 0.5pF[3].

Penandaan resistor

Resistor aksial biasanya menggunakan pola pita warna untuk menunjukkan resistansi. Resistor pasang-permukaan ditandas secara numerik jika cukup besar untuk dapat ditandai, biasanya resistor ukuran kecil yang sekarang digunakan terlalu kecil untuk dapat ditandai. Kemasan biasanya cokelat muda, cokelat, biru, atau hijau, walaupun begitu warna lain juga mungkin, seperti merah tua atau abu-abu.
Resistor awal abad ke-20 biasanya tidak diisolasi, dan dicelupkan ke cat untuk menutupi seluruh badan untuk pengkodean warna. Warna kedua diberikan pada salah satu ujung, dan sebuah titik (atau pita) warna di tengah memberikan digit ketiga. Aturannya adalah "badan, ujung, titik" memberikan urutan dua digit resistansi dan pengali desimal. Toleransi dasarnya adalah ±20%. Resistor dengan toleransi yang lebih rapat menggunakan warna perak (±10%) atau emas (±5%) pada ujung lainnya.

Identifikasi empat pita

Identifikasi empat pita adalah skema kode warna yang paling sering digunakan. Ini terdiri dari empat pita warna yang dicetak mengelilingi badan resistor. Dua pita pertama merupakan informasi dua digit harga resistansi, pita ketiga merupakan faktor pengali (jumlah nol yang ditambahkan setelah dua digit resistansi) dan pita keempat merupakan toleransi harga resistansi. Kadang-kadang terdapat pita kelima yang menunjukkan koefisien suhu, tetapi ini harus dibedakan dengan sistem lima warna sejati yang menggunakan tiga digit resistansi.
Sebagai contoh, hijau-biru-kuning-merah adalah 56 x 104Ω = 560 kΩ ± 2%. Deskripsi yang lebih mudah adalah: pita pertama, hijau, mempunyai harga 5 dan pita kedua, biru, mempunyai harga 6, dan keduanya dihitung sebagai 56. Pita ketiga,kuning, mempunyai harga 104, yang menambahkan empat nol di belakang 56, sedangkan pita keempat, merah, merupakan kode untuk toleransi ± 2%, memberikan nilai 560.000Ω pada keakuratan ± 2%.
Warna Pita pertama Pita kedua Pita ketiga
(pengali)
Pita keempat
(toleransi)
Pita kelima
(koefisien suhu)
Hitam 0 0 × 100

Cokelat 1 1 ×101 ± 1% (F) 100 ppm
Merah 2 2 × 102 ± 2% (G) 50 ppm
Jingga (oranye) 3 3 × 103
15 ppm
Kuning 4 4 × 104
25 ppm
Hijau 5 5 × 105 ± 0.5% (D)
Biru 6 6 × 106 ± 0.25% (C)
Ungu 7 7 × 107 ± 0.1% (B)
Abu-abu 8 8 × 108 ± 0.05% (A)
Putih 9 9 × 109

Emas

× 10-1 ± 5% (J)
Perak

× 10-2 ± 10% (K)
Kosong


± 20% (M)

Identifikasi lima pita

Identifikasi lima pita digunakan pada resistor presisi (toleransi 1%, 0.5%, 0.25%, 0.1%), untuk memberikan harga resistansi ketiga. Tiga pita pertama menunjukkan harga resistansi, pita keempat adalah pengali, dan yang kelima adalah toleransi. Resistor lima pita dengan pita keempat berwarna emas atau perak kadang-kadang diabaikan, biasanya pada resistor lawas atau penggunaan khusus. Pita keempat adalah toleransi dan yang kelima adalah koefisien suhu.

Resistor pasang-permukaan


Gambar ini menunjukan empat resistor pasang permukaan (komponen pada kiri atas adalah kondensator) termasuk dua resistor nol ohm. Resistor nol ohm sering digunakan daripada lompatan kawat sehingga dapat dipasang dengan mesin pemasang resistor.
Resistor pasang-permukaan dicetak dengan harga numerik dengan kode yang mirip dengan kondensator kecil. Resistor toleransi standar ditandai dengan kode tiga digit, dua pertama menunjukkan dua angka pertama resistansi dan angka ketiga menunjukkan pengali (jumlah nol). Contoh:
"334" = 33 × 10.000 ohm = 330 KOhm
"222" = 22 × 100 ohm = 2,2 KOhm
"473" = 47 × 1,000 ohm = 47 KOhm
"105" = 10 × 100,000 ohm = 1 MOhm
Resistansi kurang dari 100 ohm ditulis: 100, 220, 470. Contoh:
"100" = 10 × 1 ohm = 10 ohm
"220" = 22 × 1 ohm = 22 ohm
Kadang-kadang harga-harga tersebut ditulis "10" atau "22" untuk mencegah kebingungan.
Resistansi kurang dari 10 ohm menggunakan 'R' untuk menunjukkan letak titik desimal. Contoh:
"4R7" = 4.7 ohm
"0R22" = 0.22 ohm
"0R01" = 0.01 ohm
Resistor presisi ditandai dengan kode empat digit. Dimana tiga digit pertama menunjukkan harga resistansi dan digit keempat adalah pengali. Contoh:
"1001" = 100 × 10 ohm = 1 kohm
"4992" = 499 × 100 ohm = 49,9 kohm
"1000" = 100 × 1 ohm = 100 ohm
"000" dan "0000" kadang-kadang muncul bebagai harga untuk resistor nol ohm
Resistor pasang-permukaan saat ini biasanya terlalu kecil untuk ditandai.

Penandaan tipe industri

Format: XX YYYZ[4]
  • X: kode tipe
  • Y: nilai resistansi
  • Z: toleransi
Rating Daya pada 70 °C
Kode Tipe Rating Daya (Watt) Teknik MIL-R-11 Teknik MIL-R-39008
BB RC05 RCR05
CB ¼ RC07 RCR07
EB ½ RC20 RCR20
GB 1 RC32 RCR32
HB 2 RC42 RCR42
GM 3 - -
HM 4 - -
Kode Toleransi
Toleransi Teknik Industri Teknik MIL
±5% 5 J
±20% 2 M
±10% 1 K
±2% - G
±1% - F
±0.5% - D
±0.25% - C
±0.1% - B
Rentang suhu operasional membedakan komponen kelas komersil, kelas industri dan kelas militer.
  • Kelas komersil: 0 °C hingga 70 °C
  • Kelas industri: −40 °C hingga 85 °C (seringkali −25 °C hingga 85 °C)
  • Kelas militer: −55 °C hingga 125 °C (seringkali -65 °C hingga 275 °C)
  • Kelas standar: -5 °C hingga 60 °C
http://www.facebook.com/denot.ramdani 

Kamis, 09 Agustus 2012


Ledakan Kosmik, Kandidat Obyek Terjauh di Alam Semesta
Bulan April 2009, kala itu satelit Swift milik NASA berhasil mendeteksi semburan sinar gamma atau gamma ray burst aka GRB yang kemudian menarik perhatian para astronom. Apa istimewanya?

Ilustrasi semburan sinar gamma. Kredit : NASA /Swift /Cruz deWilde

GRB 090429B ini merupakan satu diantara semburan sinar gamma yang ada di alam semesta. Semburan sinar gamma sendiri merupakan ledakan keras dan bencana besar dari bintang masif. Bayangkan peristiwa ini sebagai supernova yang super, kematian bagi bintang yang memiliki umur pendek dengan kehidupan yang penuh dinamika.
Tapi lagi-lagi pertanyaannya, apa istimewanya GRB 090429B tersebut? Yang menarik dari semburan sinar gamma yang satu ini adalah kemungkinan dirinya menjadi kandidat obyek terjauh yang ada di alam semesta. Jarak yang diperkirakan adalah 13,14 milyar tahun cahaya. Artinya, semburan sinar gamma ini berada jauh melebihi keberadaan quasar yang sudah dikenal saat ini dan bahkan bisa lebih jauh lagi dari galaksi dan semburan sinar gamma yang sudah ada. Arti lainnya? Para astronom berhasil menemukan galaksi-galaksi yang berada di masa awal alam semesta. Semakin mendekati masa awal keberadaan alam semesta maka semakin banyak pula informasi yang bisa didapat tentang kondisi awal alam semesta serta apa yang terjadi saat itu.



Ledakan dari masa lalu
Ditemukan pada tanggal 29 April 2009, semburan tersebut diberi nama sekaligus mengiindikasikan saat ia ditemukan yakni 090429B dengan B menunjukkan bahwa ia merupakan semburan kedua yang diamati pada hari yang sama.
Semburan sinar gamma merupakan sebuah letupan yang sangat terang yang memancarkan lebih banyak cahaya hanya dalam waktu beberapa detik. Lebih banyak dari cahaya yang dipancarkan Matahari dalam seluruh hidupnya. Semburan yang luar biasa terang tersebut terjadi di suatu lokasi dalam rentang alam semesta yang bisa diamati. Laju terjadinya semburan di alam semesta diketahui sebanyak 2 semburan setiap harinya. Semburan yang sangat terang tersebut bisa dilihat dari jarak yang sangat jauh. Bahkan bisa dideteksi dari jarak milyaran tahun cahaya oleh Swift dan satelit pendeteksi lainnya.
Semburan sinar gamma raksasa ini meletus dari bintang yang meledak saat alam semesta masih berusia kurang dari 4% dari usianya saat ini, atau sekitar 520 juta tahun, dan ukurannya juga masih 10% lebih kecil dari ukurannya saat ini. Dengan demikian, galaksi yang menjadi rumah bagi bintang leluhur GRB 090429B merupakan salah satu dari galaksi-galaksi pertama di alam semesta.
Semburan sinar gamma berlansung sangat cepat dan berakhir hanya dalam 1 menit, dan cahaya yang tertinggal dari hasil semburan baru memudar setelah beberapa hari sampai dengan seminggu sehingga bisa diamati oleh fasilitas astronomi yang ada. Pengamatan cahaya yang tersisa pada rentang waktu tersebut memungkinkan para astronom untuk menentukan jarak semburan.
Pengukuran cahaya yang tersisa inilah yang digunakan untuk mengukur jarak GRB 090429B dan menemukan kalau semburan ini memang datang dari awal alam semesta yakni dari jarak 13,14 milyar tahun cahaya, dan menjadikannya GRB terjauh saat ini. Hasil pengamatan GRB 090429B menggunakan Gemini Observatory.
Kredit : Gemini Observatory/AURA/Andrew Levan
(University of Warwick, UK)
Berburu Ledakan Kosmik dari Masa Lalu
Untuk menemukan GRB 090429B, para astronom punya cerita menarik. Kurang dari seminggu setelah GRB 090423 dinyatakan sebagai obyek terjauh di masa itu pada jarak 13,04 milyar tahun cahaya, GRB 090429B tampak di angkasa dengan properti yang mirip. GRB 090429B merupakan kejadian yang singkat dan berakhir hanya dalam 10 detik. Pada saat itu pengamatan Swift menunjukkan keberadaan sinar X yang redup. Pagi itu pula Antonino Cucchiara, mahasiswa paska sarjana dari Penn State yang saat ini sudah berada di University of California, Berkeley, bangun pagi-pagi sekali untuk melakukan pengamatan dengan menggunakan teleskop Gemini North di Mauna Kea, Hawaii dengan harapan bisa mengetahui sifat semburan tersebut.
Tapi ternyata hasilnya tidak bisa didapat sesuai harapan. Awan muncul dan menghalangi pandangan teleskop Gemini ke semburan tersebut. Malam berikutnya cahaya yang tersisa dari semburan pun masih terlalu redup untuk didapatkan spektrumnya dan di hari berikutnya cahaya itu pun memudar sehingga tak dapat dilihat. Tanpa pengamatan tersebut, hanya jarak yang bisa diketahui tapi petunjuk yang ada memang mengarahkan bahwa semburan ini merupakan obyek terjauh.

Cahaya Semburan Pada Panjang Gelombang Infra Merah
Dengan filter berbeda, para astronom menemukan bahwa cahaya sisa semburan tersebut tampak pada pengamatan inframerah dan tidak terlihat pada pengamatan cahaya tampak. Hal ini penting karena alam semesta mengembang.
Mengembangnya alam semesta menyebabkan cahaya dari obyek yang datang dari jauh akan bekerja menentang pengembangan alam semesta. Cahaya tidak akan melambat tapi akan mengalami kehilangan energi. Akibatnya terjadi pergeseran warna cahaya ke area yang lebih merah pada spektrum yang diterima. Pada jarak yang sangat jauh, cahaya ultra ungu yang menjelajah dari jauh akan bergeser ke bagian cahaya tampak di spektrum. Yang menarik, dalam perjalanannya ada gas di alam semesta yang menyerap cahaya ultraungu dan membiarkan cahaya tampak untuk terus melaju.
http://langitselatan.com/wp-content/uploads/2011/05/geminiGRB.jpg
Kredit :Gemini Observatory/AURA/Penn State/UC Berkeley/University of Warwick, UK

Citra GRB 090429B yang dihasilkan Gemini Near-Infrared Imager (NIRI) menggunakan filter J,H, dan K (label) dan filter Z (kiri) yang diperoleh dari Gemini Multi-Object Spectrograph. Seluruh cira dihasilkan menggunakan teleskop. Gemini North di Mauna Kea, Hawai‘i.
Sekarang bayangkan, GRB yang berada demikian jauh. Jika cahaya ultra ungu bergeser ke cahaya tampak, maka tentunya cahaya tampak dari GRB akan bergeser ke arah merah yakni ke panjang gelombang infra merah. Di Bumi, yang dilihat pengamat adalah cahaya inframerah dari GRB yang sebenarnya waktu memulai perjalanan merupakan cahaya tampak. Dan pengamat tidak melihat keberadaan semburan tersebut di cahaya tampak yang saat baru memulai perjalanan melintasi alam semesta merupakan sinar ultra ungu. Inilah yang dilihat pada GRB 090429B. Cahaya Infra merah dan tidak ada tanda-tanda di cahaya tampak.
Perilaku terjadinya pergeseran inilah yang menjadi indikasi keberadaan obyek jauh dan digunakan sebagai identifikasi awal keberadaan quasar, galaksi dan semburan gamma yang berada pada jarak yang jauh. Inilah bukti pertama yang menunjukkan bahwa cahaya semburan itu datang dari lokasi yang sangat jauh.
Dengan menganalisa cahaya yang diblok atau dihalangi terhadap cahaya yang bisa terus melaju bisa digunakan untuk menghitung pergeseran merah yang terjadi dan dengan demikian menentukan jarak semburan.




Galaksi Induk Tidak Tampak

http://langitselatan.com/wp-content/uploads/2011/05/HST_GRB090429b.jpg

Teleskop Hubble diarahkan untuk mengamati lokasi semburan GRB 090429B dan tidak melihat galaksi asal semburan. Kredit : Levan / Tanvir / Cucchiara for NASA/Hubble.
Meski tidak berhasil lagi mengamati cahaya yang tersisa dari semburan, tim astronom yang terdiri dari Antonino Cucchiara, Andrew Levan dari University of Warwick, Nial Tanvir dari University of Leicester, dan pemimbing thesis Derek Fox dari Penn State terus melakukan pengamatan lanjutan selama 2 tahun berikutnya. Mereka tidak mau membiarkan GRB 090429B menjadi semburan yang berlalu begitu saja. Penelitian lanjutan dilakukan untuk mencari tahu apakah GRB 090429B datang dari jarak yang luar biasa jauh dengan mengumpulkan data baru dan pengamatan yang lebih lanjut menggunakan Gemini dan Teleskop Hubble untuk mengungkap keberadaan galaksi tempat semburan terjadi.
Seandainya jarak semburan ini “dekat” tentu galaksi yang menjadi induk atau rumah bagi semburan sinar gamma tersebut akan tampak. Pada kenyataannya galaksi induk tersebut tidak tampak bahkan bagi Hubble. Semburan sinar gamma datang dari bintang yang duluya lahir, hidup dan kemudian mati dalam ledakan yang hebat hanya dalam hitungan waktu jutaan tahun. Bintang seperti ini terbentuk dalam awan gas raksasa di dalam galaksi dan akan dapat diamati dari jarak tertentu (cukup jauh) dengan menggunakan teleskop berkemampuan tinggi.
Setelah semburan ini meredup, teleskop Hubble yang diarahkan ke lokasi semburan tidak melihat apapun. Artinya, galaksi ini berada sangat jauh, dan bahkan cahayanya pun pudar dan tidak tampak lagi.

Pemegang Rekor Obyek Terjauh
Tidak terdeteksinya GRB 090429B pada cahaya tampak dan tidak tampaknya galaksi lokasi si semburan terjadi mengindikasikan kalau semburan tersebut berasal dari jarak yang sangat jauh.
Dengan kesempatan 99,3% menjadi obyek terjauh di alam semesta saat ini pada jarak 13,14 milyar tahun cahaya melebihi GRB 09042 pada jarak 13,04 milyar tahun cahaya dan galaksi yang ditemukan tahun 2010-2011 pada jarak 13,07 milyar tahun cahaya.
Di balik keberadaannya yang jauh dan menjadi pemegang rekor terjauh di alam semesta saat ini, GRB 090429B memberi gambaran bagaimana ledakan sinar gamma dapat digunakan untuk mengungkap lokasi bintang-bintang masif di masa awal alam semesta dan melacak kembali proses awal pembentukan bintang dan galaksi yang kemudian berevolusi menjadi kosmos yang kaya galaksi yang kita kenal saat ini .